Menu

地化所活火山热液锌同位素研究取得新进展欧洲杯买球规则竞猜网站:—-中国科学院地球化学研究所

热液活动频繁的活火山系统在全球风化及元素地球化学循环中起着重要作用。在岛弧区,高温高压下形成的深源物质上升到地表后会在低温低压条件下发生复杂的生物地球化学变化,因此,处于此类地区的活火山热液系统是全面了解岩浆活动、流体运移机理、岩石与热液相互作用、火山系统水循环以及进行火山活动监测的一个重要窗口。过渡族重金属元素锌在高温下具有挥发性,其同位素可能为这些相关研究提供新的科学依据。

铁是生物生命必需元素,因此准确判定从陆地到海洋输送的铁的通量及其同位素组成对深入了解全球铁生物地球化学循环及其对海洋生物初级生产力的影响至关重要。相对于被广泛研究的背景区大型河流如亚马逊河,备受人类活动干扰的中小规模流域中铁同位素研究还非常有限。

中科院地球化学研究所环境地球化学国家重点实验室陈玖斌课题组及其合作者在建立了一种新的对富含铁和硫酸根的火山热液中锌进行浓缩提纯的色谱法的基础上,对法属Guadeloupe活火山系统的温泉热液及火山喷气中Zn同位素组成进行了系统的研究。分析结果表明,火山喷气及火山口背景岩石中Zn同位素的变化范围较小,
分别为0.21‰到0.35‰ 和-0.14‰ 到 0.42‰, 然而,温泉热液却展示了较大的
δ66Zn\ 变化范围\ (-0.43‰到1.01‰),是至今报到过的所有火山系统Zn同位素变化范围的\ 80%。Zn同位素和Zn浓度都展示了明显的向火山口增加的趋势。结合火山热液的化学成分,确定了来自深部的火山气体是火山喷气Zn的主要贡献端元,而温泉热液中的Zn却主要来自岩石与热液相互作用。除端元贡献外,在热液向地表运移的过程中,氧化还原环境变化引起的铁-锰氧化物和氢氧化物的沉淀以及火山口广泛发育的黏土矿物对Zn的吸附则会使Zn同位素组成随Zn含量的减少而降低。

中国科学院地球化学研究所陈玖斌研究员及其合作者首次对典型污染河流-法国塞纳河中颗粒态和溶解态铁同位素进行了系统研究。对流域空间和巴黎采集的时间两大系列样品进行的地球化学分析表明,铁主要以颗粒态形式被输送到海洋,占总通量的99%。相对于河床史前沉积物,颗粒态样品都具有较高的铁富集因子,预示了明显的人类活动干扰。此前,作者对同一河流研究已表明,Zn同位素是河流重金属污染的有效示踪剂。
此研究发现,颗粒态铁和锌呈明显正相关,再次验证了铁的人为贡献。然而,不同于变化较大的锌同位素组成,颗粒态铁同位素变化不大,
说明污染源与自然源铁同位素组成相似。相反,溶解态δ56Fe变化范围却很大,表明了其在源示踪方面具有更大的应用价值。尤为重要的是,溶解态铁和锌同位素呈线性相关,表明人为源和自然源对铁的共同贡献,同时,溶解态铁同位素与有机物含量正相关,说明有机物是自然源溶解态铁的主要载体,\ 而人为源中铁可能主要以硫化物或铁氧化物络合体形式存在。

研究表明,活火山系统是一个重要的Zn汇,高温下的水-岩作用过程中重的Zn同位素会优先被释放到溶液中,这使得火山热液向海洋贡献的通量会以富集重的Zn同位素为特征,这对研究陆壳演变、古气候重建以及重金属的生物地球化学循环都有重要意义,也必须在Zn同位素相关领域研究中加以考虑。这一研究再次展示了Zn等重金属稳定同位素在地球化学研究中的重要作用和广泛应用前景。

此研究表明,污染河流会向海洋额外输送铁,这个铁的通量完全可以用铁结合锌同位素进行共同示踪,这些人为排放的铁可能会增强海洋生物初级生产力,并最终影响全球碳循环进而相应的气候变化。研究还表明,同大气颗粒沉降和海底热液输入一样,污染河流的输入也不具有重的铁同位素富集的特征,因此,海洋内生物作用可能是海水铁同位素组成偏高的主要原因。这一研究也表明多同位素体系共同示踪在表生地球化学研究中的重要意义。

相关成果刚刚发表在国际权威刊物Geochimica et Cosmochimica Acta上.

相关成果刚刚发表在国际权威刊物Geochimica et Cosmochimica Acta上。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章

网站地图xml地图